If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 14n2 + 12n + 9 = 0 Reorder the terms: 9 + 12n + 14n2 = 0 Solving 9 + 12n + 14n2 = 0 Solving for variable 'n'. Begin completing the square. Divide all terms by 14 the coefficient of the squared term: Divide each side by '14'. 0.6428571429 + 0.8571428571n + n2 = 0 Move the constant term to the right: Add '-0.6428571429' to each side of the equation. 0.6428571429 + 0.8571428571n + -0.6428571429 + n2 = 0 + -0.6428571429 Reorder the terms: 0.6428571429 + -0.6428571429 + 0.8571428571n + n2 = 0 + -0.6428571429 Combine like terms: 0.6428571429 + -0.6428571429 = 0.0000000000 0.0000000000 + 0.8571428571n + n2 = 0 + -0.6428571429 0.8571428571n + n2 = 0 + -0.6428571429 Combine like terms: 0 + -0.6428571429 = -0.6428571429 0.8571428571n + n2 = -0.6428571429 The n term is 0.8571428571n. Take half its coefficient (0.4285714286). Square it (0.1836734694) and add it to both sides. Add '0.1836734694' to each side of the equation. 0.8571428571n + 0.1836734694 + n2 = -0.6428571429 + 0.1836734694 Reorder the terms: 0.1836734694 + 0.8571428571n + n2 = -0.6428571429 + 0.1836734694 Combine like terms: -0.6428571429 + 0.1836734694 = -0.4591836735 0.1836734694 + 0.8571428571n + n2 = -0.4591836735 Factor a perfect square on the left side: (n + 0.4285714286)(n + 0.4285714286) = -0.4591836735 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 7/3*9/28=20 | | 3n-2=9n+4 | | -x-(8x)= | | y=x^2(3x-2) | | -(2/5)x=-8 | | 6b-4+2b=12 | | 1/3r-4=2 | | -2(p+3)-p-5=-3(p+5)+4 | | (2h-3)=1 | | cos(x+y)+cos(x-y)= | | 18h^-5/6h^-9 | | n=10(17+11) | | 5x(2x-3)+10=8-3(4x-2) | | -8p-3(5-6p)=5(p-3)-35 | | -9-g=-5g-41 | | H=-t^2+50t | | 3x+11=-1.5x-9 | | -3y=-54 | | 7-5(b-4)=7 | | 2x^2+13x+15=y | | F(-8)=3x+4 | | x^2+8-15=0 | | 1.5x=3600000-x | | 8(6x-1)=-8 | | (6xy^4+cos(y))dx+(2kx^2y^3-xsin(y))dy=0 | | 2cosx+cosx= | | (y-3)(y+4)+2=y-3 | | 3(-x+2)-4(x-2)=14 | | 1.2x-1.2=20 | | 10(x-2)=15 | | y=-2f(y-1)+1 | | 1cosx+1cosx= |